首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24336篇
  免费   3937篇
  国内免费   3288篇
化学   18381篇
晶体学   366篇
力学   1285篇
综合类   239篇
数学   2911篇
物理学   8379篇
  2024年   18篇
  2023年   421篇
  2022年   522篇
  2021年   771篇
  2020年   945篇
  2019年   944篇
  2018年   797篇
  2017年   789篇
  2016年   1093篇
  2015年   1195篇
  2014年   1438篇
  2013年   1867篇
  2012年   2172篇
  2011年   2290篇
  2010年   1673篇
  2009年   1571篇
  2008年   1812篇
  2007年   1580篇
  2006年   1469篇
  2005年   1207篇
  2004年   945篇
  2003年   757篇
  2002年   754篇
  2001年   607篇
  2000年   459篇
  1999年   451篇
  1998年   395篇
  1997年   274篇
  1996年   298篇
  1995年   282篇
  1994年   236篇
  1993年   215篇
  1992年   176篇
  1991年   204篇
  1990年   175篇
  1989年   145篇
  1988年   106篇
  1987年   102篇
  1986年   76篇
  1985年   83篇
  1984年   40篇
  1983年   42篇
  1982年   31篇
  1981年   25篇
  1980年   17篇
  1979年   14篇
  1978年   13篇
  1977年   13篇
  1976年   11篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
63.
64.
Two new (12) and six known (38) nucleoside alkaloids were isolated from the rhizomes of Ligusticum striatum DC. Compounds 1 and 2 (liguadenosines A and B) were unusual N-10 substituted adenosine derivatives. Their structures were elucidated by extensive spectroscopic analyses and ECD calculation. Most of them significantly inhibited the abnormal increase in platelet aggregation induced by ADP at concentrations of 50 and 100 μM. Particularly, the inhibitory effect of 3 was equivalent to aspirin.  相似文献   
65.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
66.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
67.
In this paper, we study polynomials orthogonal with respect to a Pollaczek–Jacobi type weight The uniform asymptotic expansions for the monic orthogonal polynomials on the interval (0,1) and outside this interval are obtained. Moreover, near , the uniform asymptotic expansion involves Airy function as , and Bessel function of order α as in the neighborhood of , the uniform asymptotic expansion is associated with Bessel function of order β as . The recurrence coefficients and leading coefficient of the orthogonal polynomials are expressed in terms of a particular Painlevé III transcendent. We also obtain the limit of the kernel in the bulk of the spectrum. The double scaled logarithmic derivative of the Hankel determinant satisfies a σ‐form Painlevé III equation. The asymptotic analysis is based on the Deift and Zhou's steepest descent method.  相似文献   
68.
69.
The design of DNA-based logic circuits has become an active research field in DNA nanotechnology and holds great potential in intelligent bioanalysis. To date, although many DNA-based logic systems have been realized, the implementation of advanced logic functions is still challenging, especially with simple and homogeneous compositions. Herein, by integrating two DNA tetraplex structures (G-quadruplex and i-motif), a completely label-free logic platform with high scalability was established, with which a series of advanced functions were realized, including arithmetic (adders and subtractors) and nonarithmetic ones (majority and dual-transfer gates). Furthermore, the platform was also applied as an intelligent biosensor to coanalyze two cancer-related micro-RNAs with high sensitivities and specificities. Considering the excellent versatility, expandability, and biocompatibility, the platform may promote the development of DNA computing and hold great potential in multiparameter sensing and medical diagnosis.  相似文献   
70.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号